44

Digital Fundamentals

Table 2.2, given that A, B, and C are the inputs, and an LED is the active-low output (assume that the
LED is turned on by driving a logic 0 rather than a logic 1).

TABLE 2.2 LED Driver Logic Truth Table

A B C LED
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

This LED driver truth table can be converted into the following Boolean logic equation with a Kar-
naugh map or simply by inspection:

LED = ABC+ABC+ABC

After consulting a list of available 7400 logic ICs, three become attractive for our application: the
7404 inverter, 7408 AND, and 7432 OR. The LED driver logic equation requires four inverters, six
two-input AND gates, and two 2-input OR gates. Four ICs are required, because a 7404 provides six
inverters, a 7408 provides four AND gates, and a 7432 contains four OR gates. These four ICs can
be connected according to a schematic diagram as shown in Fig. 2.12. A schematic diagram illus-
trates the electrical connectivity scheme of various components. Each component is identified by a
reference designator consisting of a letter followed by a number. ICs are commonly identified by
reference designators beginning with the letter “U”. Additionally, each component has numerous
pins that are numbered on the diagram. These pin numbers conform to the IC manufacturer’s num-
bering scheme. Each of these 7400-series ICs has 14 pins. Another convention that remains from bi-
polar logic days is the use of the label VCC to indicate the positive voltage supply node. GND
represents ground—the common, or return, voltage supply node.

All ICs require connections to a power source. In this circuit, +5 V serves as the power supply, be-
cause the 7400 family is commonly manufactured in a bipolar semiconductor process requiring a
+5-V supply. The four rectangular blocks at the top of the diagram represent this power connection
information. Because this schematic diagram shows individual gates, the gates’ reference designa-
tors contain an alphabetic suffix to identify unique instances of gates within the same IC. Not all
gates in each IC are actually used. Those that are unused are tied inactive by connecting their inputs
to a valid logic level—in this case, ground. It would be equally valid to connect the inputs of unused
gates to the positive supply voltage, +5 V.

This logic circuit would work, but a more efficient solution is available to those who are familiar
with the capabilities of the 7400 family. The 7411 provides three 3-input AND gates, which is per-
fect for this application, allowing a reduction in the part count to three ICs instead of four. This cir-

Integrated Circuits and the 7400 Logic Families 45

A
| 14 T14 TM T14
vCC vee vee vCcC 9 12
7404, U1 7408, U2 7408, U4 7432, U3 10 g 13 u
GND GND GND GND 9
[| I 7 7432, U3C 7408, U4D

12 1 10
11

—_— 13
A 1IN.2 : — j>_ 7404, U1E
L , 2 7432, U3D " »
7404, U1A ° ’_{>"_
7408, U2A L4 :Di

10 7404, UTF
B . B ; 7408, U4C
_| >“—| L of
8
7404, U1B 10 D—L
7408, U2c L2
C s A 13
: 4 7.

7404, U1C - DQ—L
7408, U4A 2

7408, U4B

7432, U3A

7432,u3B 7404, U1D

FIGURE 2.12 LED driver logic implementation.

cuit is shown in Fig. 2.13 with alternative notation to illustrate varying circuit presentation styles.
Rather than drawing gates as separate elements, the complete 7400-series ICs are shown as mono-
lithic blocks. Either notation is commonly accepted and depends on the engineer’s preference.

2.5 SYNCHRONOUS LOGIC DESIGN WITH THE 7400 FAMILY

The preceding LED driver example shows how state-less logic (logic without flops and a clock) can
be designed to implement an arbitrary logic equation. State-full logic is almost always required in a
digital system, because it is necessary to advance one step at a time (one step each cycle) through an
algorithm. Some 7400 ICs, such as counters, implement synchronous logic within the IC itself by
combining Boolean logic gates and flops on the same die. Other 7400 ICs implement only flops that
may be combined externally with logic to create the desired function.

An example of a synchronous logic application is a basic serial communications controller. Serial
communications is the process of taking parallel data, perhaps a byte of information, and transmit-
ting or receiving that byte at a rate of one bit per clock cycle. The obvious downside of doing this is
that it will take longer to transfer the byte, because it would be faster to just send the entire byte dur-
ing the same cycle. The advantage of serial communications is a reduction in the number of wires re-
quired to transfer information. Being able to string only a few wires between buildings instead of
dozens usually compensates for the added serial transfer time. If the time required to serially transfer
bits is too slow, the rate at which the bits are sent can be increased with some engineering work to
achieve the desired throughput. Such speed improvements are beyond the scope of this presentation.

Real serial communications devices can get fairly complicated. For purposes of discussion, a
fairly simplistic approach is taken. Once the decision is made to serialize a data byte, the problem
arises of knowing when that byte begins and ends. Framing is the process of placing special patterns
into the data stream to indicate the start and end of data units. Without some means to frame the in-
dividual bits as they are transmitted, the receiver would have no means of finding the first and last
bits of each byte. In this example, a single start bit is used to mark the first bit. Once the first bit is

